

High-Order Numerical Simulation of Shock/Boundary Layer Interaction over Surface Roughness Using the FR/CPR-LLAV Method

Modeling Methods Session, TFAWS (NASA)

Meilin Yu, Assistant Professor
Department of Mechanical Engineering
University of Maryland, Baltimore County

Contents

- Background
- **4** Numerical Methods & Verification
- Shock/Boundary Layer Interaction (SBLI)
 - > SBLI over smooth walls
 - > SBLI over surface roughness
- **4** Conclusions & Future Work

Contents

Background

- Wumerical Methods & Verification
- Shock/Boundary Layer Interaction (SBLI)
 - > SBLI over smooth walls
 - > SBLI over surface roughness
- Conclusions & Future Work

Background

Schematics of fluid flow and heat transfer in a scramjet engine (Source: FPCE group, Stanford University)

Why High-Order CFD Methods?

2nd order

4th order

DOFs* for the 2nd order scheme: $(60\times60)\times4=14400$ DOFs for the 4th order scheme: $(30\times30)\times16=14400$

Euler vortex propagation

*: DOFs is short for degrees of freedom

Computational Cost of High-Order Methods

Computational cost per degree of freedom vs. polynomial order Euler vortex propagation, linear elements

Objectives

- ➤ Develop robust localized Laplacian artificial viscosity (LLAV) shock capturing procedures for the high-order flux reconstruction/correction procedure via reconstruction (FR/CPR) method
- ➤ Explore flow physics of complex shock-boundary layer interaction over surface roughness with the high-order FR/CPR-LLAV method

July 25, 2015

Contents

- # Background
- **4** Numerical Methods & Verification
- Shock/Boundary Layer Interaction (SBLI)
 - > SBLI over smooth walls
 - > SBLI over surface roughness
- Conclusions & Future Work

Flux Reconstruction/Correction Procedure via **Reconstruction (FR/CPR)**

First developed by H. T. Huynh (2007)

$$\frac{\partial Q}{\partial t} + \frac{\partial f}{\partial x} = 0 \longrightarrow \frac{\partial Q_h}{\partial t} + \frac{\partial f_h^I}{\partial x} = 0, \quad Q_h \in P^k(\Omega), \quad f_h^I \in P^{k+1}(\Omega)$$

$$\frac{\partial f_h^I}{\partial x} = \frac{\partial \left(f_h^D + f_h^C\right)}{\partial x}, \quad f_h^D \in P^k(\Omega), \quad f_h^C \in P^{k+1}(\Omega)$$

$$f_h^C(x) = f_L^C g_L(x) + f_R^C g_R(x)$$

- Very efficient high-order algorithm
- Generalization of discontinuous Galerkin and spectral difference/volume

Compact, suitable for parallel computation

TFAWS 7/25/2015

Localized Laplacian Artificial Viscosity

$$\frac{\partial Q}{\partial t} + \nabla \cdot \mathbf{F}^{inv}(Q) = \nabla \cdot \mathbf{F}^{av}(Q, \nabla Q)$$

Laplacian: $\mathbf{F}^{av}(Q, \nabla Q) = \varepsilon \nabla Q$

For each element *e*:

$$\varepsilon_{e} = \begin{cases} \varepsilon_{0} \\ \frac{\varepsilon_{0}}{2} \left(1 + \sin \frac{\pi (S_{e} - S_{0})}{2\kappa} \right) & \text{if } S_{e} < S_{0} - \kappa \\ if S_{0} - \kappa \leq S_{e} \leq S_{0} + \kappa \\ if S_{e} > S_{0} + \kappa. \end{cases}$$

Parameters in ε_e :

 $\varepsilon_0 = f(\Delta \xi_{max}, Pe) \cdot h \cdot |\lambda|_{max}$, based on the definition of the *Péclet* number *Pe* for a diffusion process:

Resolution-based smoothness indicator:

$$S_e = log_{10} \frac{\langle Q - Q^{proj}, Q - Q^{proj} \rangle_e}{\langle Q, Q \rangle_e},$$

Localized Laplacian Artificial Viscosity (Cont.)

Modeling criteria:

- \triangleright The artificial viscosity ε_0 is non-negative;
- When the resolution of the numerical scheme is infinite, the artificial viscosity $\varepsilon_0 \rightarrow 0$;
- The modeling is compatible with the classic results from the 2^{nd} order accurate (or equivalently P^1 reconstruction) methods.

1D Shock Tube Problem

Sod Problem

Density distribution at t = 0.2s

Harten-Lax Problem

Density distribution at t = 0.13s

Shu-Osher Problem

Density distribution at t = 1.8s

July 25, 2015

Shock-Isentropic Vortex Interaction

Free stream Ma =1.1, P^3 reconstruction (4th order), Computational domain: $[0,2] \times [0,1]$, 100×50 elements. An isentropic vortex is superposed to the supersonic

July 24, 2015

flow.

Double Mach Reflection

Ma =10, P^3 reconstruction (4th order), $t \in [0, 0.2s]$ Computational domain $[0,4] \times [0,1]$, 816 × 204 elements

Double Mach Reflection (Cont.)

Ma 3 Wind Tunnel with a Forward Facing Step

Free stream Ma = 3, P^2 reconstruction (3rd order), Grid size: 1/80, with clustered elements of size 1/320 near the sharp corner.

Contents

- # Background
- Wumerical Methods & Verification
- Shock/Boundary Layer Interaction (SBLI)
 - > SBLI over smooth walls
 - > SBLI over surface roughness
- Conclusions & Future Work

Initial & Boundary Conditions

SBLI over Smooth Walls at Re=200

 P^2 reconstruction on a 500 × 250 mesh (1.125 × 10⁶ DOFs)

 2^{nd} order MUSCL scheme on a 3000×1500 mesh $(4.5 \times 10^6 \text{ DOFs})$ (Sjogreen & Yee, 2003)

 7^{th} order FD scheme on a 1000×500 mesh $(0.5 \times 10^6 \text{ DOFs})$ (Daru & Tenaud, 2009)

SBLI over Smooth Walls at Re=1,000

SBLI over Smooth Walls at Re=1,000 (Cont.)

 7^{th} order FD scheme on a 4000×2000 mesh $(8 \times 10^6 \text{ DOFs})$ (Daru & Tenaud, 2009)

Contents

- Background
- Wumerical Methods & Verification
- Shock/Boundary Layer Interaction (SBLI)
 - > SBIII over smooth walls
 - > SBLI over surface roughness
- Conclusions & Future Work

Wall Roughness Set-Up

H/D	Triangular Element	Rectangular Element	Rectangular Cavity Element
1/32	Tri_H1	-	1
1/16	Tri_H2	-	-
1/8	Tri_H3	-	-
1/4	Tri_H4	Rec_H4	Rec_Cav_H4
1/2	-	-	Rec_Cav_H5

Cases summary

For all cases, the Reynolds number is Re = 1,000

SBLI over Triangular Surface Elements

Tri_H1 Tri_H4

Density fields

Flow Fields Comparison of Different *H/D*

$$\frac{H}{D} = \frac{1}{32}$$

$$\frac{H}{D} = \frac{1}{16}$$

$$\frac{H}{D} = \frac{1}{8}$$

$$\frac{H}{D} = \frac{1}{4}$$

Streamlines & Temperature near Roughness

H/D = 1/32

$$H/D = 1/16$$

$$H/D = 1/8$$

$$H/D = 1/4$$

Wall Temperature Comparison of Different *H/D*

Overview of wall temperature

Close-up view of wall temperature

Flow Fields over Rectangular Roughness

H/D = 1/4

Wall Temperature Comparison of Different *H/D*

Overview of wall temperature

Close-up view of wall temperature

Flow Fields over Rectangular Cavity Roughness

Streamlines & Temperature near Roughness

Smooth

H/D = 1/2

Wall Temperature Comparison of Different *H/D*

Overview of wall temperature

Close-up view of wall temperature

Wall Temperature Comparison of Different Types of Roughness Elements

Overview of wall temperature

Close-up view of wall temperature

Contents

- # Background
- Wumerical Methods & Verification
- Shock/Boundary Layer Interaction (SBLI)
 - > SBLI over smooth walls
 - > SBLI over surface roughness

4 Conclusions & Future Work

Conclusions & Future Work

- ♣ A localized Laplacian artificial viscosity (LLAV) stabilization procedure is developed for the high-order unstructured-grid-based flux reconstruction/correction procedure via reconstruction (FR/CPR) method.
- ♣ The FR/CPR-LLAV method is used to simulate shock-boundary layer interaction (SBLI) with and without wall roughness.
 - The FR/CPR-LLAV method can sharply capture shock structures and efficiently resolve boundary-layer separation features
 - ➤ The FR/CPR-LLAV method is capable of flow simulation over complex geometry
 - ➤ The FR/CPR-LLAV method is compact, and therefore, is suitable for parallel computing

Conclusions & Future Work (Cont.)

- ♣ Effects of surface roughness on SBLI are numerically investigated.
 - ➤ Surface roughness can substantially modify the interaction between the shock and the boundary layer, thus affecting surface heat transfer processes
 - ➤ In the current 2D study, the triangular roughness elements with relatively large height-width ratio can enhance the mixing near the wall
 - ➤ The rectangular (cavity) roughness elements with relatively large height-width ratio can trap the evolving separation vortices, resulting in redistribution of surface temperature
 - → More studies on 2D roughness elements of different types
 - Extension to 3D shock-turbulence interaction

References

- H. T. Huynh, "A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods," in the 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, 2007.
- **Z. J. Wang** and **H. Y. Gao**, "A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids," Journal of Computational Physics, Vol. 228, pp. 8161-8186, 2009.
- **P. Vincent**, **P. Castonguay**, and **A. Jameson**, "A new class of high-order energy stable flux reconstruction schemes", Journal of Scientific Computing, Vol. 47, pp. 50-72, 2011.
- M. L. Yu and Z. J. Wang, "On the connection between the correction and weighting functions in the correction procedure via reconstruction method," Journal of Scientific Computing., vol. 54, no. 1, pp. 227-244, 2013.
- M. L. Yu, Z. J. Wang and Y. Liu, "On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods," Journal of Computational Physics, Vol. 259, pp. 70-95, 2014.
- P.-O. Persson and J. Peraire, "Sub-cell shock capturing for discontinuous Galerkin methods," in the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006.
- M. L. Yu and Z. J. Wang, "Shock capturing for the correction procedure via reconstruction method using artificial viscosity and diffusivity," in ICCFD8, Chengdu, China, 2014.
- M. L. Yu, F. X. Giraldo, M. Peng and Z. J. Wang, "Localized artificial viscosity stabilization of discontinuous Galerkin methods for nonhydrostatic mesoscale atmospheric modeling," report, Naval Postgraduate School.
- **B. Sjögreen** and **H. C. Yee**, "Grid convergence of high order methods for multiscale complex unsteady viscous compressible flows," Journal of Computational Physics, Vol. 185, pp. 1-26, 2003.
- V. Daru and C. Tenaud, "Numerical simulation of the viscous shock tube problem by using a high resolution monotonicity-preserving scheme," Computers & Fluids, Vol. 38, pp. 664-676, 2009.

Thank you!